Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(4): e1010993, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068087

RESUMO

Dorsal horn of the spinal cord is an important crossroad of pain neuraxis, especially for the neuronal plasticity mechanisms that can lead to chronic pain states. Windup is a well-known spinal pain facilitation process initially described several decades ago, but its exact mechanism is still not fully understood. Here, we combine both ex vivo and in vivo electrophysiological recordings of rat spinal neurons with computational modeling to demonstrate a role for ASIC1a-containing channels in the windup process. Spinal application of the ASIC1a inhibitory venom peptides mambalgin-1 and psalmotoxin-1 (PcTx1) significantly reduces the ability of deep wide dynamic range (WDR) neurons to develop windup in vivo. All deep WDR-like neurons recorded from spinal slices exhibit an ASIC current with biophysical and pharmacological characteristics consistent with functional expression of ASIC1a homomeric channels. A computational model of WDR neuron supplemented with different ASIC1a channel parameters accurately reproduces the experimental data, further supporting a positive contribution of these channels to windup. It also predicts a calcium-dependent windup decrease for elevated ASIC conductances, a phenomenon that was experimentally validated using the Texas coral snake ASIC-activating toxin (MitTx) and calcium-activated potassium channel inhibitory peptides (apamin and iberiotoxin). This study supports a dual contribution to windup of calcium permeable ASIC1a channels in deep laminae projecting neurons, promoting it upon moderate channel activity, but ultimately leading to calcium-dependent windup inhibition associated to potassium channels when activity increases.


Assuntos
Cálcio , Dor , Animais , Ratos , Cálcio/metabolismo , Simulação por Computador , Neurônios/fisiologia , Peptídeos , Apamina/metabolismo
2.
Front Mol Neurosci ; 15: 880651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774865

RESUMO

Lysophosphatidyl-choline (LPC), a member of the phospholipid family, is an emerging player in pain. It is known to modulate different pain-related ion channels, including Acid-Sensing Ion Channel 3 (ASIC3), a cationic channel mainly expressed in peripheral sensory neurons. LPC potentiates ASIC3 current evoked by mild acidifications, but can also activate the channel at physiological pH. Very recently, LPC has been associated to chronic pain in patients suffering from fibromyalgia or osteoarthritis. Accordingly, repetitive injections of LPC within mouse muscle or joint generate both persistent pain-like and anxiety-like behaviors in an ASIC3-dependent manner. LPC has also been reported to generate acute pain behaviors when injected intraplantarly in rodents. Here, we explore the mechanism of action of a single cutaneous injection of LPC by studying its effects on spinal dorsal horn neurons. We combine pharmacological, molecular and functional approaches including in vitro patch clamp recordings and in vivo recordings of spinal neuronal activity. We show that a single cutaneous injection of LPC exclusively affects the nociceptive pathway, inducing an ASIC3-dependent sensitization of nociceptive fibers that leads to hyperexcitabilities of both high threshold (HT) and wide dynamic range (WDR) spinal neurons. ASIC3 is involved in LPC-induced increase of WDR neuron's windup as well as in WDR and HT neuron's mechanical hypersensitivity, and it participates, together with TRPV1, to HT neuron's thermal hypersensitivity. The nociceptive input induced by a single LPC cutaneous rather induces short-term sensitization, contrary to previously described injections in muscle and joint. If the effects of peripheral LPC on nociceptive pathways appear to mainly depend on peripheral ASIC3 channels, their consequences on pain may also depend on the tissue injected. Our findings contribute to a better understanding of the nociceptive signaling pathway activated by peripheral LPC via ASIC3 channels, which is an important step regarding the ASIC3-dependent roles of this phospholipid in acute and chronic pain conditions.

3.
Pain ; 163(10): 1999-2013, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086123

RESUMO

ABSTRACT: Rheumatic diseases are often associated to debilitating chronic pain, which remains difficult to treat and requires new therapeutic strategies. We had previously identified lysophosphatidylcholine (LPC) in the synovial fluids from few patients and shown its effect as a positive modulator of acid-sensing ion channel 3 (ASIC3) able to induce acute cutaneous pain in rodents. However, the possible involvement of LPC in chronic joint pain remained completely unknown. Here, we show, from 2 independent cohorts of patients with painful rheumatic diseases, that the synovial fluid levels of LPC are significantly elevated, especially the LPC16:0 species, compared with postmortem control subjects. Moreover, LPC16:0 levels correlated with pain outcomes in a cohort of osteoarthritis patients. However, LPC16:0 do not appear to be the hallmark of a particular joint disease because similar levels are found in the synovial fluids of a second cohort of patients with various rheumatic diseases. The mechanism of action was next explored by developing a pathology-derived rodent model. Intra-articular injections of LPC16:0 is a triggering factor of chronic joint pain in both male and female mice, ultimately leading to persistent pain and anxiety-like behaviors. All these effects are dependent on ASIC3 channels, which drive sufficient peripheral inputs to generate spinal sensitization processes. This study brings evidences from mouse and human supporting a role for LPC16:0 via ASIC3 channels in chronic pain arising from joints, with potential implications for pain management in osteoarthritis and possibly across other rheumatic diseases.


Assuntos
Canais Iônicos Sensíveis a Ácido , Dor Crônica , Osteoartrite , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Artralgia/etiologia , Feminino , Humanos , Lisofosfatidilcolinas/toxicidade , Masculino , Camundongos , Osteoartrite/complicações
4.
Elife ; 72018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044222

RESUMO

Speech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.


Assuntos
Gânglios da Base/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Tentilhões/fisiologia , Aprendizagem , Vias Neurais/fisiologia , Tálamo/fisiologia , Vocalização Animal/fisiologia , Animais , Estimulação Encefálica Profunda , Vias Neurais/anatomia & histologia , Neurônios/fisiologia , Fonética , Células de Purkinje/metabolismo , Espectrografia do Som , Sinapses/fisiologia , Fatores de Tempo
5.
Neuroscience ; 359: 49-68, 2017 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-28712792

RESUMO

The plasticity of nervous systems allows animals to quickly adapt to a changing environment. In particular, seasonal plasticity of brain structure and behavior is often critical to survival or mating in seasonal climates. Songbirds provide striking examples of seasonal changes in neural circuits and vocal behavior and have emerged as a leading model for adult brain plasticity. While seasonal plasticity and the well-characterized process of juvenile song learning may share common neural mechanisms, the extent of their similarity remains unclear. Especially, it is unknown whether the basal ganglia (BG)-forebrain loop which implements song learning in juveniles by driving vocal exploration participates in seasonal plasticity. To address this issue, we performed bilateral lesions of the output structure of the song-related BG-forebrain circuit (the magnocellular nucleus of the anterior nidopallium) in canaries during the breeding season, when song is most stereotyped, and just after resuming singing in early fall, when canaries sing their most variable songs and may produce new syllable types. Lesions drastically reduced song acoustic variability, increased song and phrase duration, and decreased syntax variability in early fall, reverting at least partially seasonal changes observed between the breeding season and early fall. On the contrary, lesions did not affect singing behavior during the breeding season. Our results therefore indicate that the BG-forebrain pathway introduces acoustic and syntactic variability in song when canaries resume singing in early fall. We propose that BG-forebrain circuits actively participate in seasonal plasticity by injecting variability in behavior during non-breeding season. SIGNIFICANCE STATEMENT: The study of seasonal plasticity in temperate songbirds has provided important insights into the mechanisms of structural and functional plasticity in the central nervous system. The precise function and mechanisms of seasonal song plasticity however remain poorly understood. We show here that a basal ganglia-forebrain circuit involved in the acquisition and maintenance of birdsong is actively inducing song variability outside the breeding season, when singing is most variable, while having little effect on the stereotyped singing during the breeding season. Our results suggest that seasonal plasticity reflects an active song-maintenance process akin to juvenile learning, and that basal ganglia-forebrain circuits can drive plasticity in a learned vocal behavior during the non-injury-induced degeneration and reconstruction of the neural circuit underlying its production.


Assuntos
Gânglios da Base/fisiologia , Plasticidade Neuronal , Prosencéfalo/fisiologia , Vocalização Animal , Animais , Canários , Masculino , Atividade Motora , Vias Neurais/fisiologia , Estações do Ano , Processamento de Sinais Assistido por Computador , Espectrografia do Som
6.
Neurobiol Aging ; 36(2): 1013-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25433460

RESUMO

Somatostatin (SOM) cortical levels decline in Alzheimer's disease (AD) in correlation with cognitive impairment severity, the latter being closely related to the presence of neurofibrillary tangles. Impaired olfaction is another hallmark of AD tightly related to tau pathology in the olfactory pathways. Recent studies showed that SOM modulates olfactory processing, suggesting that alterations in SOM levels participate to olfactory deficits in AD. Herein, we first observed that human olfactory peduncle and cortex are enriched in SOM cells and fibers, in aged postmortem brains. Then, the possible link between SOM alterations and olfactory deficits was evaluated by exploring the impact of age and tau hyperphosphorylation on olfactory SOM networks and behavioral performances in THY-Tau22 mice, a tauopathy transgenic model. Distinct molecular repertoires of SOM peptide and receptors were associated to sensory or cortical olfactory processing structures. Aging mainly affected SOM neurotransmission in piriform and entorhinal cortex in wild-type mice, although olfactory performances decreased. However, no further olfactory impairment was evidenced in THY-Tau22 mice until 12 months although tau pathology early affected olfactory cortical structures. Thus, tau hyperphosphorylation per se has a limited impact on olfactory performances in THY-Tau22 mice.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Olfato/genética , Olfato/fisiologia , Somatostatina/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Cognição , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Olfatório/metabolismo , Córtex Olfatório/patologia , Condutos Olfatórios/patologia , Condutos Olfatórios/fisiopatologia , Fosforilação , Somatostatina/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...